Glucose cycling in islets from healthy and diabetic rats

Diabetes. 1990 Apr;39(4):456-9. doi: 10.2337/diab.39.4.456.

Abstract

Pancreatic islets from healthy (control) and neonatally streptozocin-induced diabetic (STZ-D) rats, a model for non-insulin-dependent diabetes mellitus, were incubated with 3H2O and 5.5 or 16.7 mM glucose. At 5.5 mM glucose, no detectable [3H]glucose was formed. At 16.7 mM, 2.2 patom.islet-1.h-1 of 3H was incorporated into glucose by the control islets and 5.4 patom.islet-1.h-1 by STZ-D islets. About 75% of the 3H was bound to carbon-2 of the glucose. Glucose utilization was 35.3 pmol.islet-1.h-1 by the control and 19.0 pmol.islet-1.h-1 by the STZ-D islets. Therefore, 4.5% of the glucose-6-phosphate formed by the control islets and 15.7% by the STZ-D islets was dephosphorylated. This presumably occurred in the beta-cells of the islets catalyzed by glucose-6-phosphatase. An increased glucose cycling, i.e., glucose----glucose-6-phosphate----glucose, in islets of STZ-D rats may contribute to the decreased insulin secretion found in these animals.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Diabetes Mellitus, Experimental / metabolism*
  • Female
  • Glucose / metabolism*
  • Glucose / pharmacology
  • Insulin / metabolism
  • Insulin Secretion
  • Islets of Langerhans / drug effects
  • Islets of Langerhans / metabolism*
  • Male
  • Radioisotope Dilution Technique
  • Rats
  • Rats, Inbred Strains
  • Reference Values
  • Tritium

Substances

  • Insulin
  • Tritium
  • Glucose