Should eGFR and albuminuria be added to the Framingham risk score? Chronic kidney disease and cardiovascular disease risk prediction

Nephron Clin Pract. 2011;119(2):c171-7; discussion c177-8. doi: 10.1159/000325669. Epub 2011 Jul 28.

Abstract

Presence of chronic kidney disease (CKD) defined as decreased glomerular filtration rate (GFR) and/or increased urine albumin excretion is associated with heightened risk of cardiovascular disease (CVD) and all-cause as well as CVD mortality. Although CKD is strongly linked with CVD, it remains undetermined whether this strong association is simply due to shared CVD risk factors or unique traits consequential to CKD. The probability of future CVD events can be estimated with reasonable accuracy using the Framingham equation which was derived from the Framingham study, a community-based cohort of 5,209 white adults aged 30-62 years who were first examined in 1948. Efforts to capture excess CVD risk associated with CKD have been evaluated by adding estimated GFR, cystatin C, serum creatinine and measures of urinary albumin excretion to the Framingham equation which is based on traditional cardiovascular risk factors. Although decreased GFR and increased urine albumin excretion are consistently associated with cardiovascular outcomes, the addition of these factors to the Framingham equation has not been shown to substantially improve overall CVD risk prediction in populations not enriched with CKD. Moreover, the Framingham equation itself underpredicts cardiovascular events among adults with stage 3 and 4 CKD without clinical CVD. Given the poor performance of the Framingham equation in adults with CKD, future studies should explore risk equations which include traditional CVD risk factors and the unique comorbidities associated with CKD for prediction of cardiovascular events in adults with CKD.

Publication types

  • Review

MeSH terms

  • Albuminuria* / etiology
  • Cardiovascular Diseases / etiology*
  • Chronic Disease
  • Creatinine / urine
  • Forecasting
  • Glomerular Filtration Rate*
  • Humans
  • Kidney Diseases / complications
  • Kidney Diseases / physiopathology*
  • Kidney Diseases / urine*
  • Risk Assessment
  • Risk Factors

Substances

  • Creatinine