Design Optimization for a 2-D Sparse Transducer Array for 3-D Ultrasound Imaging

Proc IEEE Ultrason Symp. 2010 Oct 11:2010:1928-1931. doi: 10.1109/ULTSYM.2010.5935854.

Abstract

In 3-D ultrasound imaging where 2-D transducer arrays with more than hundreds of elements are used, sparse arrays can be used to reduce the number of active ultrasound channels. Under a restriction of desired number of active channels, we can maximize the image quality by optimally choosing the positions of active elements. Here we use the method of simulated annealing to find the optimal configuration of a 2-D sparse array. This algorithm tries to minimize the value of an objective function defined as the energy ratio between the nonfocal and focal regions in the point spread function (PSF). Optimal configurations were found for the cases of choosing 16, 20, 24, 28, and 32 transmit and receive elements from a 16×16-element rectangular transducer array. With only 32 transmit and 32 receive elements, we could achieve an energy ratio of 16%, compared to 6% of the full array, which is the gold standard utilizing all the 256 elements for both transmit and receive. Using Field II, we simulated imaging with the optimal sparse arrays, for off-axis targets as well as on-axis targets, and the resulting images were compared with those from some other configurations, such as full-transmit full-receive, full-transmit x-receive, x-transmit boundary-receive, and so on.