Partial-post Laplace barriers for virtual confinement, stable displacement, and >5 cm s(-1) electrowetting transport

Lab Chip. 2011 Dec 21;11(24):4221-7. doi: 10.1039/c1lc20749k. Epub 2011 Oct 28.

Abstract

Laplace barriers composed of full-posts or ridges have been previously reported as a mechanism for virtual fluid confinement, but with unstable displacement (capillary fingering or fluid trapping, respectively). A new platform of 'partial-posts' eliminates the disadvantages of full-posts or ridges, while providing ~60-80% open channel area for rapid electrowetting fluid transport (>5 cm s(-1)). The fluid mechanics of partial-post Laplace barriers are far more complex than previous Laplace barriers as it involves two mechanisms: fluid can first begin to propagate either between, or under, the partial-posts. Careful design of channel and partial-post geometries is required, else one mechanism will dominate over the other. The physics and performance of partial-post Laplace barriers are verified using theoretical equations, experimental results, and dynamic numerical modeling.