Modulating spin dynamics of cyclic LnIII-radical complexes (LnIII = Tb, Dy) by using phenyltrifluoroacetylacetonate coligand

Dalton Trans. 2012 Mar 14;41(10):2904-9. doi: 10.1039/c2dt11671e. Epub 2012 Jan 20.

Abstract

Three novel ring-like compounds formulated as [Ln(Phtfac)(3)(NITpPy)](2) (Ln(III) = Gd 1, Tb 2, Dy 3; HPhtfac = 4,4,4-trifluoro-1-phenylbutane-1,3-dione; NITpPy = 2-(4-pyridyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazolyl-1-oxyl-3-oxide) were synthesized and structurally and magnetically characterized. Three compounds possess cyclic dimer structure in which each pyridine substituted radical links two different metal ions through the oxygen of nitroxide group and the pyridine nitrogen. DC magnetic studies show the Ln(III) ion interacts ferromagnetically with the directly bonding nitronyl nitroxide. Both Tb(III) and Dy(III) clusters show frequency-dependent ac magnetic susceptibilities, indicating single-molecule magnet behavior. It is demonstrated that the β-diketonate coligand may play an important role in determining the magnetic relaxation for the lanthanide-radical system.