Improved survival following cerebral edema using a novel hollow fiber-hydrogel device

J Neurosurg. 2012 Jun;116(6):1389-94. doi: 10.3171/2012.2.JNS111540. Epub 2012 Mar 30.

Abstract

Object: Cerebral edema is a significant cause of morbidity and mortality in many disease states. Current therapies of cerebral edema are often ineffective in treating severe edema. Here, the authors develop a hollow fiber-hydrogel device (HFHD) for direct surface contact-based treatment of severe cerebral edema.

Methods: Brain edema was induced in adult mice via water intoxication by intraperitoneal water administration (30% body weight). Control mice received no treatment. A distinct group of mice was treated with craniectomy but no device application (craniectomy only). A third experimental group was treated with craniectomy and HFHD application. The HFHD contained a lumen solution of 350 g/L bovine serum albumin in room-temperature artificial CSF at pH 7.4. Survival and brain water content were assessed as end points.

Results: Craniectomy and application of the HFHD enhanced survival in animals with severe cerebral edema. Animals treated with a craniectomy and HFHD (n = 5) survived up to 5 hours longer than animals treated with craniectomy only (n = 5) (p < 0.001) or no treatment (n = 5) (p < 0.001). Animals treated with craniectomy and HFHD (n = 5) had a survival rate of 80% within the observation period (360 minutes), whereas no animal treated with craniectomy only (n = 5) or no treatment (n = 5) survived longer than 50 and 33 minutes, respectively. Statistical significance was observed for the survival rate between the animals treated with a craniectomy + HFHD (n = 5) versus those treated with craniectomy only (n = 5) (p < 0.001), and craniectomy + HFHD versus no treatment (n = 5) (p < 0.001). Histological analysis demonstrated no significant cell loss in the cortex subjacent to HFHD application.

Conclusions: Here, the authors demonstrate the feasibility of their HFHD to treat cerebral edema in this model. These results indicate that controlled water extraction from edematous brain tissue can be performed and can lead to increased survival compared with craniectomy only. Further studies remain to be performed to further optimize the HFHD and to test it in more clinically relevant models, such as traumatic brain injury.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Brain Edema / pathology
  • Brain Edema / therapy*
  • Cerebral Cortex / pathology
  • Decompressive Craniectomy / instrumentation*
  • Disease Models, Animal*
  • Drainage / instrumentation*
  • Equipment Design
  • Feasibility Studies
  • Female
  • Humans
  • Hydrogels*
  • Mice
  • Prostheses and Implants*
  • Water Intoxication / pathology
  • Water Intoxication / therapy

Substances

  • Hydrogels