Candidate pathway based analysis for cleft lip with or without cleft palate

Stat Appl Genet Mol Biol. 2012 Jan 6;11(2):10.2202/1544-6115.1717 /j/sagmb.2012.11.issue-2/1544-6115.1717/1544-6115.1717.xml. doi: 10.2202/1544-6115.1717.

Abstract

The objective of this research was to identify potential biological pathways associated with non-syndromic cleft lip with or without cleft palate (NSCL/P), and to explore the potential biological mechanisms underlying these associated pathways on risk of NSCL/P. This project was based on the dataset of a previously published genome-wide association (GWA) study on NSCL/P (Beaty et al. 2010). Case-parent trios used here originated from an international consortium (The Gene, Environment Association Studies consortium, GENEVA) formed in 2007. A total of 5,742 individuals from 1,908 CL/P case-parents trios (1,591 complete trios and 317 incomplete trios where one parent was missing) were collected and genotyped using the Illumina Human610-Quad array. Candidate pathways were selected using a list of 356 genes that may be related to oral clefts. In total, 42 candidate pathways, which included 1,564 genes and 40,208 SNPs were tested. Using a pathway-based analysis approach proposed by Wang et al (2007), we conducted a permutation-based test to assess the statistical significance of the nominal p-values of 42 candidate pathways. The analysis revealed several pathways yielding nominally significant p-values. However, controlling for the family wise error rate, none of these pathways could retain statistical significance. Nominal p-values of these pathways were concentrated at the lower tail of the distribution, with more than expected low p-values. A permutation based test for examining this type of distribution pattern yielded an overall p-value of 0.029. Thus, while this pathway-based analysis did not yield a clear significant result for any particular pathway, we conclude that one or more of the genes and pathways considered here likely do play a role in oral clefting.

MeSH terms

  • Alleles
  • Cleft Lip / genetics*
  • Cleft Palate / genetics*
  • Female
  • Genetic Predisposition to Disease
  • Genome-Wide Association Study
  • Humans
  • Male
  • Metabolic Networks and Pathways / genetics
  • Mutation
  • Polymorphism, Single Nucleotide
  • Signal Transduction*