Genetic basis of blood pressure and hypertension

Trends Genet. 2012 Aug;28(8):397-408. doi: 10.1016/j.tig.2012.04.001. Epub 2012 May 21.

Abstract

Blood pressure (BP) is a complex trait regulated by an intricate network of physiological pathways involving extracellular fluid volume homeostasis, cardiac contractility and vascular tone through renal, neural or endocrine systems. Untreated high BP, or hypertension (HTN), is associated with increased mortality, and thus a better understanding of the pathophysiological and genetic underpinnings of BP regulation will have a major impact on public health. However, identifying genes that contribute to BP and HTN has proved challenging. In this review we describe our current understanding of the genetic architecture of BP and HTN, which has accelerated over the past five years primarily owing to genome-wide association studies (GWAS) and the continuing progress in uncovering rare gene mutations, epigenetic markers and regulatory pathways involved in the physiology of BP. We also look ahead to future studies characterizing novel pathways that affect BP and HTN and discuss strategies for translating current findings to the clinic.

Publication types

  • Review

MeSH terms

  • Animals
  • Blood Pressure
  • Epigenesis, Genetic
  • Genome-Wide Association Study
  • Humans
  • Hypertension / genetics*
  • Hypertension / physiopathology
  • Phenotype
  • Polymorphism, Single Nucleotide