Phase-dependent changes in local dynamic stability of human gait

J Biomech. 2012 Aug 31;45(13):2208-14. doi: 10.1016/j.jbiomech.2012.06.022. Epub 2012 Jul 7.

Abstract

Several methods derived from nonlinear time series analysis have been suggested to quantify stability in human gait kinematics. One of these methods is the definition of the maximum finite time Lyapunov exponent (λ) that quantifies how the system responds to infinitesimal perturbations. However, there are fundamental limitations to the conventional definition of λ for gait kinematics. First, exponential increase in initial perturbations cannot be assumed since real-life perturbations of gait kinematics are finite sized. Second, the transitions between single and double support phase within each stride cycle define two distinct dynamical regimes that may not be captured by a single λ. The present article presents a new method to quantify intra-stride changes λ(t) in local dynamical stability and employs the method to 3D lower extremity gait kinematics in 10 healthy adults walking on a treadmill at 3 different speeds. All participants showed an intra-stride change in λ(t) in the transition between single and double support phase. The intra-stride change reflected an both a increase and decrease in λ(t) at heel strike and toe off, respectively, with increased gait speed. Furthermore, a close relationship was found between the intra-stride change in standard deviation of foot velocity in the anterior-posterior direction and the intra-stride change of the initial perturbations. The present results indicate that local dynamical stability has gait phase-dependent changes that are not identified by conventional computation of a single λ.

Publication types

  • Clinical Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Biomechanical Phenomena
  • Female
  • Gait / physiology*
  • Humans
  • Male
  • Models, Biological*
  • Postural Balance / physiology*
  • Walking / physiology*