Recombinant parainfluenza virus 5 vaccine encoding the influenza virus hemagglutinin protects against H5N1 highly pathogenic avian influenza virus infection following intranasal or intramuscular vaccination of BALB/c mice

J Virol. 2013 Jan;87(1):363-71. doi: 10.1128/JVI.02330-12. Epub 2012 Oct 17.

Abstract

New approaches for vaccination to prevent influenza virus infection are needed. Emerging viruses, such as the H5N1 highly pathogenic avian influenza (HPAI) virus, pose not only pandemic threats but also challenges in vaccine development and production. Parainfluenza virus 5 (PIV5) is an appealing vector for vaccine development, and we have previously shown that intranasal immunization with PIV5 expressing the hemagglutinin from influenza virus was protective against influenza virus challenge (S. M. Tompkins, Y. Lin, G. P. Leser, K. A. Kramer, D. L. Haas, E. W. Howerth, J. Xu, M. J. Kennett, J. E. Durbin, R. A. Tripp, R. A. Lamb, and B. He, Virology 362:139-150, 2007). While intranasal immunization is an appealing approach, PIV5 may have the potential to be utilized in other formats, prompting us to test the efficacy of rPIV5-H5, which encodes the HA from H5N1 HPAI virus, in different vaccination schemes. In the BALB/c mouse model, a single intramuscular or intranasal immunization with a live rPIV5-H5 (ZL46) rapidly induced robust neutralizing serum antibody responses and protected against HPAI challenge, although mucosal IgA responses primed by intranasal immunization more effectively controlled virus replication in the lung. The rPIV5-H5 vaccine incorporated the H5 HA into the virion, so we tested the efficacy of an inactivated form of the vaccine. Inactivated rPIV5-H5 primed neutralizing serum antibody responses and controlled H5N1 virus replication; however, similar to other H5 antigen vaccines, it required a booster immunization to prime protective immune responses. Taken together, these results suggest that rPIV5-HA vaccines and H5-specific vaccines in particular can be utilized in multiple formats and by multiple routes of administration. This could avoid potential contraindications based on intranasal administration alone and provide opportunities for broader applications with the use of a single vaccine vector.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Administration, Intranasal
  • Animals
  • Antibodies, Neutralizing / blood
  • Antibodies, Viral / blood
  • Disease Models, Animal
  • Female
  • Genetic Vectors*
  • Hemagglutinin Glycoproteins, Influenza Virus / genetics
  • Hemagglutinin Glycoproteins, Influenza Virus / immunology*
  • Influenza A Virus, H5N1 Subtype / genetics
  • Influenza A Virus, H5N1 Subtype / immunology*
  • Influenza Vaccines / administration & dosage
  • Influenza Vaccines / genetics
  • Influenza Vaccines / immunology*
  • Injections, Intramuscular
  • Mice
  • Mice, Inbred BALB C
  • Orthomyxoviridae Infections / immunology
  • Orthomyxoviridae Infections / prevention & control*
  • Paramyxoviridae / genetics*
  • Survival Analysis
  • Vaccination / methods

Substances

  • Antibodies, Neutralizing
  • Antibodies, Viral
  • Hemagglutinin Glycoproteins, Influenza Virus
  • Influenza Vaccines
  • hemagglutinin, avian influenza A virus