Direction of visual apparent motion driven by perceptual organization of cross-modal signals

J Vis. 2013 Jan 4;13(1):6. doi: 10.1167/13.1.6.

Abstract

A critical function of the human brain is to determine the relationship between sensory signals. In the case of signals originating from different sensory modalities, such as audition and vision, several processes have been proposed that may facilitate perception of correspondence between two signals despite any temporal discrepancies in physical or neural transmission. One proposal, temporal ventriloquism, suggests that audio-visual temporal discrepancies can be resolved with a capture of visual event timing by that of nearby auditory events. Such an account implies a fundamental change in the timing representations of the involved events. Here we examine if such changes are necessary to account for a recently demonstrated effect, the modulation of visual apparent motion direction by audition. By contrast, we propose that the effect is driven by segmentation of the visual sequence on the basis of perceptual organization in the cross-modal sequence. Using different sequences of cross-modal (auditory and tactile) events, we found that the direction of visual apparent motion was not consistent with a temporal capture explanation. Rather, reports of visual apparent motion direction were dictated by perceptual organization within cross-modal sequences, determined on the basis of apparent relatedness. This result adds to the growing literature indicating the importance of apparent relatedness and sequence segmentation in apparent timing. Moreover, it demonstrates that, contrary to previous findings, cross-modal interaction can play a critical role in determining organization of signals within a single sensory modality.

Publication types

  • Comparative Study

MeSH terms

  • Auditory Perception / physiology*
  • Humans
  • Motion Perception / physiology*
  • Motion*
  • Touch / physiology*
  • Visual Perception / physiology*