Inhibition of apoptosis signal-regulating kinase 1 reduces myocardial ischemia-reperfusion injury in the mouse

J Am Heart Assoc. 2012 Oct;1(5):e002360. doi: 10.1161/JAHA.112.002360. Epub 2012 Oct 25.

Abstract

Background: Despite the clear advantages of reperfusion in acute myocardial infarction, part of the myocardium is injured during reperfusion by reactive oxygen species. Reactive oxygen species activate apoptosis signal-regulating kinase-1, a key mediator in cell death. We hypothesized that inhibition of apoptosis signal-regulating kinase-1 at the time of reperfusion would protect the heart from ischemia-reperfusion injury.

Methods and results: Male CD1 mice underwent transient coronary artery ligation (30 minutes) followed by reperfusion or underwent sham surgery (n=10 to 12 per group). A selective small-molecule inhibitor of apoptosis signal-regulating kinase-1 (GS-459679) was given immediately after reperfusion (10 or 30 mg/kg IP). Infarct size was measured early (at 24 hours, in a subgroup of mice) by triphenyl tetrazolium chloride staining and late (at 7 days) by Masson's trichrome staining for fibrosis. Apoptosis was assessed by measurement of caspase-3 activity and by determination of DNA fragmentation in cardiomyocytes bordering the infarct. Transthoracic echocardiography was performed before surgery and then at 24 hours and 7 days later. Treatment with GS-459679 at reperfusion led to a significant dose-related reduction in infarct size (31% for 10 mg/kg [P<0.001 versus vehicle] and 60% for 30 mg/kg [P<0.001 versus vehicle]), inhibition of apoptotic cell death, and preservation of left ventricular dimension and systolic function at both 24 hours and 7 days.

Conclusions: Inhibition of apoptosis signal-regulating kinase-1 at the time of reperfusion limits infarct size and preserves left ventricular function in a model of acute myocardial infarction in the mouse.

Keywords: apoptosis; inhibitors; ischemia; remodeling; reperfusion.

MeSH terms

  • Animals
  • DNA Fragmentation / drug effects
  • Echocardiography
  • MAP Kinase Kinase Kinase 5 / antagonists & inhibitors*
  • Male
  • Mice
  • Models, Animal
  • Myocardial Infarction / enzymology
  • Myocardial Infarction / pathology
  • Myocardial Infarction / prevention & control*
  • Myocardial Reperfusion Injury / enzymology
  • Myocardial Reperfusion Injury / pathology
  • Myocardial Reperfusion Injury / prevention & control*
  • Myocytes, Cardiac / enzymology
  • Myocytes, Cardiac / pathology

Substances

  • MAP Kinase Kinase Kinase 5