Rsf-1, a chromatin remodelling protein, interacts with cyclin E1 and promotes tumour development

J Pathol. 2013 Mar;229(4):559-68. doi: 10.1002/path.4147. Epub 2013 Feb 4.

Abstract

Chromosome 11q13.5 containing RSF1 (HBXAP), a gene involved in chromatin remodelling, is amplified in several human cancers including ovarian carcinoma. Our previous studies demonstrated requirement of Rsf-1 for cell survival in cancer cells, which contributed to tumour progression; however, its role in tumourigenesis has not yet been elucidated. In this study, we co-immunoprecipitated proteins with Rsf-1 followed by nanoelectrospray mass spectrometry and identified cyclin E1, besides SNF2H, as one of the major Rsf-1 interacting proteins. Like RSF1, CCNE1 is frequently amplified in ovarian cancer, and both Rsf-1 and cyclin E1 were found co-up-regulated in ovarian cancer tissues. Ectopic expression of Rsf-1 and cyclin E1 in non-tumourigenic TP53(mut) RK3E cells led to an increase in cellular proliferation and tumour formation by activating cyclin E1-associated kinase (CDK2). Tumourigenesis was not detected if either cyclin E1 or Rsf-1 was expressed, or they were expressed in a TP53(wt) background. Domain mapping showed that cyclin E1 interacted with the first 441 amino acids of Rsf-1. Ectopic expression of this truncated domain significantly suppressed G1/S-phase transition, cellular proliferation, and tumour formation of RK3E-p53(R175H) /Rsf-1/cyclin E1 cells. The above findings suggest that Rsf-1 interacts and collaborates with cyclin E1 in neoplastic transformation and TP53 mutations are a prerequisite for tumour-promoting functions of the RSF/cyclin E1 complex.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Cell Cycle
  • Cell Line, Tumor
  • Cell Proliferation
  • Cell Transformation, Neoplastic
  • Chromatin Assembly and Disassembly
  • Cyclin E / genetics
  • Cyclin E / metabolism*
  • Cyclin-Dependent Kinase 2 / genetics
  • Cyclin-Dependent Kinase 2 / metabolism
  • Cystadenocarcinoma, Serous / genetics
  • Cystadenocarcinoma, Serous / metabolism*
  • Cystadenocarcinoma, Serous / pathology
  • Disease Models, Animal
  • Female
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Mice
  • Molecular Sequence Data
  • Mutation
  • Nuclear Proteins / genetics
  • Nuclear Proteins / metabolism*
  • Oncogene Proteins / genetics
  • Oncogene Proteins / metabolism*
  • Ovarian Neoplasms / genetics
  • Ovarian Neoplasms / metabolism*
  • Ovarian Neoplasms / pathology
  • Protein Interaction Mapping
  • Protein Structure, Tertiary
  • Trans-Activators / genetics
  • Trans-Activators / metabolism*
  • Tumor Suppressor Protein p53 / genetics
  • Tumor Suppressor Protein p53 / metabolism
  • Up-Regulation

Substances

  • CCNE1 protein, human
  • Cyclin E
  • Nuclear Proteins
  • Oncogene Proteins
  • RSF1 protein, human
  • TP53 protein, human
  • Trans-Activators
  • Tumor Suppressor Protein p53
  • CDK2 protein, human
  • Cyclin-Dependent Kinase 2