Biosensing approaches for rapid genotoxicity and cytotoxicity assays upon nanomaterial exposure

Small. 2013 May 27;9(9-10):1821-30. doi: 10.1002/smll.201201593. Epub 2013 Feb 18.

Abstract

The increased utilization of nanomaterials could affect human health and the environment due to increased exposure. Several mechanisms regarding the negative effects of nanomaterials have been proposed, one of the most discussed being oxidative stress. Many studies have shown that some metal oxide nanoparticles can enhance reactive oxygen species generation, inducing oxidative stress, DNA damage, and unregulated cell signaling, and eventually leading to changes in cell motility, apoptosis, and even carcinogenesis. 8-Hydroxy-2'-deoxyguanosine (8-OHdG) is one of the predominant forms of oxidative DNA damage, and has therefore been widely used as a biomarker for oxidative stress and carcinogenesis. Ther are two major objectives to this study. Firstly, the development of a novel lateral flow immunoassay (LFIA) is presented to measure the concentration of 8-OHdG in cells and thus reveal the nanotoxicity on the genomic level. The feasibility of this new method is validated by comparison with two other established methods: Alamar Blue assay and a recently developed electrical impedance sensing (EIS) system on the level of cell proliferation/viability. Secondly, the toxicological effects of three metallic nanoparticles (CuO, CdO, and TiO2 ) are investigated and compared using these three methods with completely different mechanisms. The results show that there is a high variation among different nanoparticles concerning their ability to cause toxic effects. CuO nanoparticles are the most potent regarding cytotoxicity and DNA damage. CdO shows a fallen cell viability as well as DNA damage, however, to a lesser extent than CuO nanoparticles. TiO2 particles only cause very limited cytotoxicity, and there is no obvious increase in 8-OHdG levels. In conclusion, LFIA as well as the EIS system are useful methods for quantitative or qualitative nanotoxicity assessments with high sensitivity, specificity, speed of performance, and simplicity.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • 8-Hydroxy-2'-Deoxyguanosine
  • Biomarkers / metabolism
  • Biosensing Techniques*
  • Cell Survival / drug effects*
  • DNA Damage
  • Deoxyguanosine / analogs & derivatives
  • Deoxyguanosine / metabolism
  • Electric Impedance
  • Humans
  • Microscopy, Electron, Transmission
  • Mutagenicity Tests
  • Nanostructures / toxicity*
  • Oxidative Stress

Substances

  • Biomarkers
  • 8-Hydroxy-2'-Deoxyguanosine
  • Deoxyguanosine