High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability

Sci Rep. 2013:3:1455. doi: 10.1038/srep01455.

Abstract

Soft magnetic materials (SMMs) find important applications in a number of areas. The diverse requirements for these applications are often demanding and challenging for the design and fabrication of SMMs. Here we report a new class of FeCoNi(AlSi)x (0 ≤ x ≤ 0.8 in molar ratio) SMMs based on high-entropy alloys (HEAs). It is found that with the compositional and structural changes, the optimal balance of magnetic, electrical, and mechanical properties is achieved at x = 0.2, for which the combination of saturation magnetization (1.15 T), coercivity (1,400 A/m), electrical resistivity (69.5 μΩ·cm), yield strength (342 MPa), and strain without fracture (50%) makes the alloy an excellent SMM. Ab initio calculations are used to explain the high magnetic saturation of the present HEAs and the effects of compositional structures on magnetic characteristics. The HEA-based SMMs point to new directions in both the application of HEAs and the search for novel SMMs.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Alloys / chemistry*
  • Crystallography, X-Ray
  • Electric Impedance
  • Entropy*
  • Magnetics*
  • Materials Testing / methods
  • Microscopy, Electron, Scanning
  • Spectrometry, X-Ray Emission
  • Stress, Mechanical
  • Tensile Strength*

Substances

  • Alloys