Optimization of programmed-temperature vaporization injection preparative capillary GC for compound specific radiocarbon analysis

J Sep Sci. 2013 Jul;36(13):2136-44. doi: 10.1002/jssc.201300088. Epub 2013 Jun 10.

Abstract

Preparative capillary GC (PCGC) is a powerful tool for the separation and purification of compounds from any complex matrix, which can be used for compound-specific radiocarbon analysis. However, the effect of PCGC parameters on the trapping efficiency is not well understood. Here, we present a comprehensive study on the optimization of parameters based on 11 reference compounds with different physicochemical properties. Under the optimum conditions, the trapping efficiencies of these 11 compounds (including high-boiling-point n-hentriacontane and methyl lignocerate) are about 80% (60-89%). The isolation of target compounds from standard solutions, plant and soil samples demonstrates that our optimized method is applicable for different classes of compounds including n-alkanes, fatty acid esters, long-chain fatty alcohol esters, polycyclic aromatic hydrocarbons (PAHs) and steranes. By injecting 25 μL in large volume injection mode, over 100 μg, high purity (>90%) target compounds are harvested within 24 h. The recovery ranges of two real samples are about 70% (59.9-83.8%) and about 83% (77.2-88.5%), respectively. Compared to previous studies, our study makes significant improvement in the recovery of PCGC, which is important for its wide application in biogeochemistry, environmental sciences, and archaeology.

Keywords: Biomarkers; Compound specific radiocarbon analysis; Preparative capillary GC; Programmed-temperature vaporization injection.