Global expression profiling of transcription factor genes provides new insights into pathogenicity and stress responses in the rice blast fungus

PLoS Pathog. 2013;9(6):e1003350. doi: 10.1371/journal.ppat.1003350. Epub 2013 Jun 6.

Abstract

Because most efforts to understand the molecular mechanisms underpinning fungal pathogenicity have focused on studying the function and role of individual genes, relatively little is known about how transcriptional machineries globally regulate and coordinate the expression of a large group of genes involved in pathogenesis. Using quantitative real-time PCR, we analyzed the expression patterns of 206 transcription factor (TF) genes in the rice blast fungus Magnaporthe oryzae under 32 conditions, including multiple infection-related developmental stages and various abiotic stresses. The resulting data, which are publicly available via an online platform, provided new insights into how these TFs are regulated and potentially work together to control cellular responses to a diverse array of stimuli. High degrees of differential TF expression were observed under the conditions tested. More than 50% of the 206 TF genes were up-regulated during conidiation and/or in conidia. Mutations in ten conidiation-specific TF genes caused defects in conidiation. Expression patterns in planta were similar to those under oxidative stress conditions. Mutants of in planta inducible genes not only exhibited sensitive to oxidative stress but also failed to infect rice. These experimental validations clearly demonstrated the value of TF expression patterns in predicting the function of individual TF genes. The regulatory network of TF genes revealed by this study provides a solid foundation for elucidating how M. oryzae regulates its pathogenesis, development, and stress responses.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Fungal Proteins / genetics
  • Fungal Proteins / metabolism*
  • Gene Expression Profiling / methods
  • Gene Expression Regulation, Fungal / physiology*
  • Magnaporthe / genetics
  • Magnaporthe / metabolism*
  • Magnaporthe / pathogenicity*
  • Mutation
  • Oryza / microbiology
  • Oxidative Stress / physiology*
  • Plant Diseases / microbiology
  • Transcription Factors / genetics
  • Transcription Factors / metabolism*
  • Transcription, Genetic / physiology*

Substances

  • Fungal Proteins
  • Transcription Factors

Grants and funding

This work was supported by National Research Foundation of Korea grants funded by the Korean government (Grant number: 2012-0001149 and 2012-0000141; http://www.nrf.re.kr), The Technology Development Program for Agriculture and Forestry (TDPAF) of the MIFAFF of the Korean government (Grant number: 309015-04-SB020; http://www.mifaff.go.kr), and The Next-Generation BioGreen 21 Program of Rural Development Administration in Korea (Grant number: PJ00821201; www.rda.go.kr). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.