Dissociative photoionization of glycerol and its dimer occurs predominantly via a ternary hydrogen-bridged ion-molecule complex

J Am Chem Soc. 2013 Sep 25;135(38):14229-39. doi: 10.1021/ja405511v. Epub 2013 Sep 11.

Abstract

The photoionization and dissociative photoionization of glycerol are studied experimentally and theoretically. Time-of-flight mass spectrometry combined with vacuum ultraviolet synchrotron radiation ranging from 8 to 15 eV is used to investigate the nature of the major fragments and their corresponding appearance energies. Deuterium (1,1,2,3,3-D5) and (13)C (2-(13)C) labeling is employed to narrow down the possible dissociation mechanisms leading to the major fragment ions (C3H(x)O2(+), C2H(x)O2(+), C2H(x)O(+), CH(x)O(+)). We find that the primary fragmentation of the glycerol radical cation (m/z 92) occurs only via two routes. The first channel proceeds via a six-membered hydrogen-transfer transition state, leading to a common stable ternary intermediate, comprised of neutral water, neutral formaldehyde, and a vinyl alcohol radical cation, which exhibits a binding energy of ≈42 kcal/mol and a very short (1.4 Å) hydrogen bond. Fragmentation of this intermediate gives rise to experimentally observed m/z 74, 62, 44, and 45. Fragments m/z 74 and 62 both consist of hydrogen-bridged ion-molecule complexes with binding energy >25 kcal/mol, whereas the m/z 44 species lacks such stabilization. This explains why water- or formaldehyde-loss products are observed first. The second primary fragmentation route arises from cleaving the elongated C-C bond. Also for this channel, intermediates comprised of hydrogen-bridged ion-molecule complexes exhibiting binding energies >24 kcal/mol are observed. Energy decomposition analysis reveals that electrostatic and charge-transfer interactions are equally important in hydrogen-bridged ion-molecule complexes. Furthermore, the dissociative photoionization of the glycerol dimer is investigated and compared to the main pathways for the monomeric species. To a first approximation, the glycerol dimer radical cation can be described as a monomeric glycerol radical cation in the presence of a spectator glycerol, thus giving rise to a dissociation pattern similar to that of the monomer.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Cations
  • Dimerization
  • Glycerol / chemistry
  • Glycerol / radiation effects*
  • Hydrogen / chemistry*
  • Hydrogen Bonding
  • Light
  • Molecular Conformation
  • Quantum Theory
  • Static Electricity
  • Thermodynamics

Substances

  • Cations
  • Hydrogen
  • Glycerol