Cardiac cell culture model as a left ventricle mimic for cardiac tissue generation

Anal Chem. 2013 Sep 17;85(18):8773-9. doi: 10.1021/ac401910d. Epub 2013 Aug 29.

Abstract

A major challenge in cardiac tissue engineering is the delivery of hemodynamic mechanical cues that play a critical role in the early development and maturation of cardiomyocytes. Generation of functional cardiac tissue capable of replacing or augmenting cardiac function therefore requires physiologically relevant environments that can deliver complex mechanical cues for cardiomyocyte functional maturation. The goal of this work is the development and validation of a cardiac cell culture model (CCCM) microenvironment that accurately mimics pressure-volume changes seen in the left ventricle and to use this system to achieve cardiac cell maturation under conditions where mechanical loads such as pressure and stretch are gradually increased from the unloaded state to conditions seen in vivo. The CCCM platform, consisting of a cell culture chamber integrated within a flow loop was created to accomplish culture of 10 day chick embryonic ventricular cardiomyocytes subject to 4 days of stimulation (10 mmHg, ∼13% stretch at a frequency of 2 Hz). Results clearly show that CCCM conditioned cardiomyocytes accelerate cardiomyocyte structural and functional maturation in comparison to static unloaded controls as evidenced by increased proliferation, alignment of actin cytoskeleton, bundle-like sarcomeric α-actinin expression, higher pacing beat rate at lower threshold voltages, and increased shortening. These results confirm the CCCM microenvironment can accelerate immature cardiac cell structural and functional maturation for potential cardiac regenerative applications.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Cell Culture Techniques / methods*
  • Chick Embryo
  • Heart Ventricles / cytology*
  • Myocytes, Cardiac*
  • Tissue Engineering / methods*