Climate-driven ichthyoplankton drift model predicts growth of top predator young

PLoS One. 2013 Nov 12;8(11):e79225. doi: 10.1371/journal.pone.0079225. eCollection 2013.

Abstract

Climate variability influences seabird population dynamics in several ways including access to prey near colonies during the critical chick-rearing period. This study addresses breeding success in a Barents Sea colony of common guillemots Uria aalge where trophic conditions vary according to changes in the northward transport of warm Atlantic Water. A drift model was used to simulate interannual variations in transport of cod Gadus morhua larvae along the Norwegian coast towards their nursery grounds in the Barents Sea. The results showed that the arrival of cod larvae from southern spawning grounds had a major effect on the size of common guillemot chicks at fledging. Furthermore, the fraction of larvae from the south was positively correlated to the inflow of Atlantic Water into the Barents Sea thus clearly demonstrating the mechanisms by which climate-driven bottom-up processes influence interannual variations in reproductive success in a marine top predator.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Atlantic Ocean
  • Body Size
  • Charadriiformes* / growth & development
  • Climate*
  • Ecosystem*
  • Environment
  • Larva / growth & development
  • Norway
  • Population Dynamics

Grants and funding

The research was funded by the Norwegian Research Council (No 216547/E40). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.