Elemental profiles and signatures of fugitive dusts from Chinese deserts

Sci Total Environ. 2014 Feb 15:472:1121-9. doi: 10.1016/j.scitotenv.2013.11.011. Epub 2013 Dec 19.

Abstract

Elemental profiles were determined for size-separated fugitive dust particles produced from Chinese desert and gobi soils. Seventeen surface soil samples from six Chinese deserts were collected, composited, resuspended, and sampled through TSP, PM10, and PM2.5 inlets onto Teflon® filters, which were analyzed for twenty-six elements. Two major dust sources could be distinguished based on differences in crustal and enriched elements-the northwestern (NW) region (Taklimakan Desert, Xinjiang Gobi, and Anxinan Gobi) and northern (N) region (Ulan Buh Desert, Central Inner Mongolia Desert, and Erenhot Gobi). The N sources showed lower concentrations of mineral elements (Fe, K, Na, Ti, Mn, Cr, and Rb in PM10, and Fe, K, Ti, Mn, Co, and V in PM2.5) and higher levels of contaminants (S, Zn, Mo, Cu, Cr, Pb, Cd, and As) than the NW ones, especially in PM2.5. Enrichment factors for Cu, Cr, Zn, Pb, As, Mo, and Cd calculated relative to the upper continental crust showed enrichments of one to two orders-of-magnitude, and they were much higher for N sources than NW ones, implying stronger anthropogenic impacts in north China. Aerosol elemental concentrations during dust events at Horqin, Beijing, and Xi'an matched the mass percentages of mineral elements from their presumptive sources better than the alternative ones, validating the differences between the NW and N sources. Additionally, Na/S, Mg/S, Fe/Al, K/Al, Si/Fe, and Na/Al ratios were suggested to differentiate the two dust source regions. The elemental ratios of Ca/Al, K/Al, Fe/Al, and Ti/Fe in the source regions matched those in aerosols collected downwind, and they can be considered as possible source indicators.

Keywords: Asian dust; Chinese deserts; Elemental profiles; Source signatures.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Aerosols / analysis
  • Air Pollutants / analysis*
  • China
  • Desert Climate
  • Dust / analysis*
  • Environmental Monitoring*
  • Trace Elements / analysis*

Substances

  • Aerosols
  • Air Pollutants
  • Dust
  • Trace Elements