The Inhibitory Effect of Apigenin on the Agonist-Induced Regulation of Vascular Contractility via Calcium Desensitization-Related Pathways

Biomol Ther (Seoul). 2014 Feb;22(2):100-5. doi: 10.4062/biomolther.2014.012.

Abstract

Apigenin, a natural flavonoid found in a variety of vegetables and fruits, has been shown to possess many biological functions. The present study was undertaken to investigate the influence of apigenin on vascular smooth muscle contractility and to determine the mechanism involved. Denuded aortic rings from male rats were used and isometric contractions were recorded and combined with molecular experiments. Apigenin significantly relaxed fluoride-, thromboxane A2 mimetic- or phorbol ester-induced vascular contraction, which suggests that apigenin could be an anti-hypertensive that reduces agonist-induced vascular contraction regardless of endothelial nitric oxide synthesis. Furthermore, apigenin significantly inhibited fluoride-induced increases in pMYPT1 levels and phorbol ester-induced increases in pERK1/2 levels, which suggests the mechanism involving the inhibition of Rho-kinase and MEK activity and the subsequent phosphorylation of MYPT1 and ERK1/2. This study provides evidence regarding the mechanism underlying the relaxation effect of apigenin on agonist-induced vascular contraction regardless of endothelial function.

Keywords: Apigenin; ERK1/2; Fluoride; MYPT1; Phorbol ester; Rho-kinase.