CO2 activation and carbonate intermediates: an operando AP-XPS study of CO2 electrolysis reactions on solid oxide electrochemical cells

Phys Chem Chem Phys. 2014 Jun 21;16(23):11633-9. doi: 10.1039/c4cp01054j. Epub 2014 May 8.

Abstract

Through the use of ambient pressure X-ray photoelectron spectroscopy and specially designed ceria-based solid oxide electrochemical cells, carbon dioxide (CO2) electrolysis reactions (CO2 + 2e(-)→ CO + O(2-)) and carbon monoxide (CO) electro-oxidation reactions (CO + O(2-)→ CO2 + 2e(-)) over cerium oxide electrodes have been investigated in the presence of 0.5 Torr CO-CO2 gas mixtures at ∼600 °C. Carbonate species (CO3(2-)) are identified on the ceria surface as reaction intermediates. When CO2 electrolysis is promoted on ceria electrodes at +2.0 V applied bias, we observe a higher concentration of CO3(2-) over a 400 μm-wide active region on the ceria surface, accompanied by Ce(3+)/Ce(4+) redox changes. This increase in the CO3(2-) steady-state concentration suggests that the process of pre-coordination of CO2 to the ceria surface to form a CO3(2-) intermediate (CO2(g) + O(2-)(surface)→ CO3(2-)(surface)) precedes a rate-limiting electron transfer process involving CO3(2-) reduction to give CO and oxide ions (CO3(2-)(surface) + 2Ce(3+)→ CO(g) + 2O(2-)(surface) + 2Ce(4+)). When the applied bias is switched to -1.5 V to promote CO electro-oxidation on ceria, the surface CO3(2-) concentration slightly decreases from the equilibrium value, suggesting that the electron transfer process is also a rate-limiting process in the reverse direction.