Investigating repetition and change in musical rhythm by functional MRI

Neuroscience. 2014 Sep 5:275:469-76. doi: 10.1016/j.neuroscience.2014.06.029. Epub 2014 Jun 24.

Abstract

Groove-based rhythm is a basic and much appreciated feature of Western popular music. It is commonly associated with dance, movement and pleasure and is characterized by the repetition of a basic rhythmic pattern. At various points in the musical course, drum breaks occur, representing a change compared to the repeated pattern of the groove. In the present experiment, we investigated the brain response to such drum breaks in a repetitive groove. Participants were scanned with functional magnetic resonance imaging (fMRI) while listening to a previously unheard naturalistic groove with drum breaks at uneven intervals. The rhythmic pattern and the timing of its different parts as performed were the only aspects that changed from the repetitive sections to the breaks. Differences in blood oxygen level-dependent activation were analyzed. In contrast to the repetitive parts, the drum breaks activated the left cerebellum, the right inferior frontal gyrus (RIFG), and the superior temporal gyri (STG) bilaterally. A tapping test using the same stimulus showed an increase in the standard deviation of inter-tap-intervals in the breaks versus the repetitive parts, indicating extra challenges for auditory-motor integration in the drum breaks. Both the RIFG and STG have been associated with structural irregularity and increase in musical-syntactical complexity in several earlier studies, whereas the left cerebellum is known to play a part in timing. Together these areas may be recruited in the breaks due to a prediction error process whereby the internal model is being updated. This concurs with previous research suggesting a network for predictive feed-forward control that comprises the cerebellum and the cortical areas that were activated in the breaks.

Keywords: fMRI; musical syntax; prediction error; rhythm; timing.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Auditory Perception / physiology*
  • Brain / physiology*
  • Brain Mapping*
  • Female
  • Humans
  • Image Processing, Computer-Assisted
  • Magnetic Resonance Imaging
  • Male
  • Middle Aged
  • Music*
  • Psychomotor Performance / physiology
  • Young Adult