Effects of explicit atmospheric convection at high CO2

Proc Natl Acad Sci U S A. 2014 Jul 29;111(30):10943-8. doi: 10.1073/pnas.1407175111. Epub 2014 Jul 14.

Abstract

The effect of clouds on climate remains the largest uncertainty in climate change predictions, due to the inability of global climate models (GCMs) to resolve essential small-scale cloud and convection processes. We compare preindustrial and quadrupled CO2 simulations between a conventional GCM in which convection is parameterized and a "superparameterized" model in which convection is explicitly simulated with a cloud-permitting model in each grid cell. We find that the global responses of the two models to increased CO2 are broadly similar: both simulate ice-free Arctic summers, wintertime Arctic convection, and enhanced Madden-Julian oscillation (MJO) activity. Superparameterization produces significant differences at both CO2 levels, including greater Arctic cloud cover, further reduced sea ice area at high CO2, and a stronger increase with CO2 of the MJO.

Keywords: climate projections; climate sensitivity; global warming.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Arctic Regions
  • Atmosphere*
  • Carbon Dioxide*
  • Climate Change*
  • Ice
  • Models, Theoretical*

Substances

  • Ice
  • Carbon Dioxide