The ErbB4 CYT2 variant protects EGFR from ligand-induced degradation to enhance cancer cell motility

Sci Signal. 2014 Aug 19;7(339):ra78. doi: 10.1126/scisignal.2005157.

Abstract

The epidermal growth factor receptor (EGFR) is a member of the ErbB family that can promote the migration and proliferation of breast cancer cells. Therapies that target EGFR can promote the dimerization of EGFR with other ErbB receptors, which is associated with the development of drug resistance. Understanding how interactions among ErbB receptors alter EGFR biology could provide avenues for improving cancer therapy. We found that EGFR interacted directly with the CYT1 and CYT2 variants of ErbB4 and the membrane-anchored intracellular domain (mICD). The CYT2 variant, but not the CYT1 variant, protected EGFR from ligand-induced degradation by competing with EGFR for binding to a complex containing the E3 ubiquitin ligase c-Cbl and the adaptor Grb2. Cultured breast cancer cells overexpressing both EGFR and ErbB4 CYT2 mICD exhibited increased migration. With molecular modeling, we identified residues involved in stabilizing the EGFR dimer. Mutation of these residues in the dimer interface destabilized the complex in cells and abrogated growth factor-stimulated cell migration. An exon array analysis of 155 breast tumors revealed that the relative mRNA abundance of the ErbB4 CYT2 variant was increased in ER+ HER2- breast cancer patients, suggesting that our findings could be clinically relevant. We propose a mechanism whereby competition for binding to c-Cbl in an ErbB signaling heterodimer promotes migration in response to a growth factor gradient.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Breast Neoplasms / genetics
  • Breast Neoplasms / metabolism*
  • Breast Neoplasms / pathology
  • Cell Line, Tumor
  • Cell Movement*
  • Drug Resistance, Neoplasm / genetics
  • ErbB Receptors / genetics
  • ErbB Receptors / metabolism*
  • Female
  • GRB2 Adaptor Protein / genetics
  • GRB2 Adaptor Protein / metabolism
  • Humans
  • Protein Structure, Tertiary
  • Protein Transport / genetics
  • Proteolysis*
  • Proto-Oncogene Proteins c-cbl / genetics
  • Proto-Oncogene Proteins c-cbl / metabolism
  • Receptor, ErbB-4 / genetics
  • Receptor, ErbB-4 / metabolism*

Substances

  • GRB2 Adaptor Protein
  • GRB2 protein, human
  • Proto-Oncogene Proteins c-cbl
  • EGFR protein, human
  • ERBB4 protein, human
  • ErbB Receptors
  • Receptor, ErbB-4
  • CBL protein, human