Elatoside C protects against hypoxia/reoxygenation-induced apoptosis in H9c2 cardiomyocytes through the reduction of endoplasmic reticulum stress partially depending on STAT3 activation

Apoptosis. 2014 Dec;19(12):1727-35. doi: 10.1007/s10495-014-1039-3.

Abstract

Endoplasmic reticulum (ER) stress-induced apoptosis has been suggested to contribute to myocardial ischemia-reperfusion (I/R) injury. Elatoside C is one of the major triterpenoid compounds isolated from Aralia elata that is known to be cardioprotective. However, its effects on I/R injury to cardiac myocytes have not been clarified. This study aimed to investigate the possible protective effect of Elatoside C against hypoxia/reoxygenation (H/R)-induced H9c2 cardiomyocyte injury and its underlying mechanisms. H9c2 cardiomyocytes were subjected to H/R in the presence of Elatoside C. Our results showed that Elatoside C (25 μM) treatment provided significant protection against H/R-induced cell death, as evidenced by improved cell viability, maintained mitochondrial membrane potential, diminished mitochondrial ROS, and reduced apoptotic cardiomyocytes (P < 0.05). These changes were associated with the inhibition of ER stress-associated apoptosis markers (GRP78, CHOP, Caspase-12 and JNK), as well as the increased phosphorylation of STAT3 and an increased Bcl2/Bax ratio. Moreover, these effects of Elatoside C were prevented by the STAT3 inhibitor Stattic. Taken together, these results suggested that Elatoside C can alleviate H/R-induced cardiomyocyte apoptosis most likely by activating the STAT3 pathways and reducing ER stress-associated apoptosis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis / drug effects*
  • Aralia
  • Cardiotonic Agents / pharmacology*
  • Cell Hypoxia
  • Cell Line
  • Endoplasmic Reticulum Stress / drug effects*
  • Myocardial Reperfusion Injury / metabolism
  • Myocardial Reperfusion Injury / pathology
  • Myocytes, Cardiac / drug effects*
  • Myocytes, Cardiac / metabolism
  • Myocytes, Cardiac / pathology
  • Rats
  • STAT3 Transcription Factor / metabolism*
  • Saponins / pharmacology*
  • Triterpenes / pharmacology*

Substances

  • Cardiotonic Agents
  • STAT3 Transcription Factor
  • Saponins
  • Triterpenes
  • elatoside C