Fish sound production in the presence of harmful algal blooms in the eastern Gulf of Mexico

PLoS One. 2014 Dec 31;9(12):e114893. doi: 10.1371/journal.pone.0114893. eCollection 2014.

Abstract

This paper presents the first known research to examine sound production by fishes during harmful algal blooms (HABs). Most fish sound production is species-specific and repetitive, enabling passive acoustic monitoring to identify the distribution and behavior of soniferous species. Autonomous gliders that collect passive acoustic data and environmental data concurrently can be used to establish the oceanographic conditions surrounding sound-producing organisms. Three passive acoustic glider missions were conducted off west-central Florida in October 2011, and September and October 2012. The deployment period for two missions was dictated by the presence of red tide events with the glider path specifically set to encounter toxic Karenia brevis blooms (a.k.a red tides). Oceanographic conditions measured by the glider were significantly correlated to the variation in sounds from six known or suspected species of fish across the three missions with depth consistently being the most significant factor. At the time and space scales of this study, there was no detectable effect of red tide on sound production. Sounds were still recorded within red tide-affected waters from species with overlapping depth ranges. These results suggest that the fishes studied here did not alter their sound production nor migrate out of red tide-affected areas. Although these results are preliminary because of the limited measurements, the data and methods presented here provide a proof of principle and could serve as protocol for future studies on the effects of algal blooms on the behavior of soniferous fishes. To fully capture the effects of episodic events, we suggest that stationary or vertically profiling acoustic recorders and environmental sampling be used as a complement to glider measurements.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Dinoflagellida / growth & development
  • Fishes*
  • Gulf of Mexico
  • Harmful Algal Bloom*
  • Oceanography
  • Optical Devices
  • Sound*
  • Statistics as Topic

Associated data

  • Dryad/10.5061/dryad.32565

Grants and funding

The authors received no specific funding for this work. This manuscript is a result of an unfunded analysis from an opportunistic dataset. The funding sources for the glider operations that allowed for this opportunistic dataset were provided by the State of Florida via the College of Marine Science Interdisciplinary Research Grant Program, NFI2010, and the Gulf of Mexico Ocean Observing System (GCOOS), NA08NOS4730411 99-S120305. Funding for the satellite imagery was provided by the BP/Gulf of Mexico Research Initiative with the Center for Integrated Modeling and Analysis of Gulf Ecosystems (C-IMAGE) Contract, #SA 12-10/GoMRI-007, and the U.S. NASA Ocean Biology and Biogeochemistry (OBB) program, NNX13AD08G.