Cell death pathway induced by resveratrol-bovine serum albumin nanoparticles in a human ovarian cell line

Oncol Lett. 2015 Mar;9(3):1359-1363. doi: 10.3892/ol.2015.2851. Epub 2015 Jan 7.

Abstract

Resveratrol-bovine serum albumin nanoparticles (RES-BSANP) exhibit chemotherapeutic properties, which trigger apoptosis. The aim of the present study was to investigate the caspase-independent cell death pathway induced by RES-BSANP in human ovarian cancer SKOV3 cells and to analyze its mechanism. Morphological changes were observed by apoptotic body/cell nucleus DNA staining using inverted and fluorescence microscopy. The cell death pathway was determined by phosphatidylserine translocation. Western blot analysis was conducted to detect the activation of apoptosis-inducing factor (AIF), cytochrome c (Cyto c) and B-cell lymphoma 2-associated X protein (Bax). Apoptotic body and nuclear condensation and fragmentation were observed simultaneously following treatment with RES-BSANP. RES-BSANP induced apoptosis in a dose-dependent manner in the human ovarian cancer SKOV3 cells. The translocation of AIF from the mitochondria to the cytoplasm occurred earlier than that of Cyto c. In addition, Bax binding to the mitochondria was required for the release of AIF and Cyto c from the mitochondria. The AIF apoptosis pathway may present an alternative caspase-dependent apoptosis pathway in human ovarian cell death induced by RES-BSANP. Elucidation of this pathway may be critical for the treatment of cancer using high doses of RES-BSANP.

Keywords: apoptosis; caspase-independent; programmed cell death; resveratrol-bovine serum albumin nanoparticles.