Roll-to-Roll Encapsulation of Metal Nanowires between Graphene and Plastic Substrate for High-Performance Flexible Transparent Electrodes

Nano Lett. 2015 Jun 10;15(6):4206-13. doi: 10.1021/acs.nanolett.5b01531. Epub 2015 Jun 1.

Abstract

Transparent conductive film on plastic substrate is a critical component in low-cost, flexible, and lightweight optoelectronics. Industrial-scale manufacturing of high-performance transparent conductive flexible plastic is needed to enable wide-ranging applications. Here, we demonstrate a continuous roll-to-roll (R2R) production of transparent conductive flexible plastic based on a metal nanowire network fully encapsulated between graphene monolayer and plastic substrate. Large-area graphene film grown on Cu foil via a R2R chemical vapor deposition process was hot-laminated onto nanowires precoated EVA/PET film, followed by a R2R electrochemical delamination that preserves the Cu foil for reuse. The encapsulated structure minimized the resistance of both wire-to-wire junctions and graphene grain boundaries and strengthened adhesion of nanowires and graphene to plastic substrate, resulting in superior optoelectronic properties (sheet resistance of ∼8 Ω sq(-1) at 94% transmittance), remarkable corrosion resistance, and excellent mechanical flexibility. With these advantages, long-cycle life flexible electrochromic devices are demonstrated, showing up to 10000 cycles.

Keywords: Flexible transparent electrode; encapsulation; graphene; metal nanowires; roll-to-roll.

Publication types

  • Research Support, Non-U.S. Gov't