Sonochemistry: Science and Engineering

Ultrason Sonochem. 2016 Mar:29:104-28. doi: 10.1016/j.ultsonch.2015.07.023. Epub 2015 Jul 26.

Abstract

Sonochemistry offers a simple route to nanomaterial synthesis with the application of ultrasound. The tiny acoustic bubbles, produced by the propagating sound wave, enclose an incredible facility where matter interact among at energy as high as 13 eV to spark extraordinary chemical reactions. Within each period - formation, growth and collapse of bubbles, lies a coherent phase of material formation. This effective yet highly localized method has facilitated synthesis of various chemical and biological compounds featuring unique morphology and intrinsic property. The benign processing lends to synthesis without any discrimination towards a certain group of material, or the substrates where they are grown. As a result, new and improved applications have evolved to reach out various field of science and technology and helped engineer new and better devices. Along with the facile processing and notes on the essence of sonochemistry, in this comprehensive review, we discuss the individual and mutual effect of important input parameters on the nanomaterial synthesis process as a start to help understand the underlying mechanism. Secondly, an objective discussion of the diversely synthesized nanomaterial follows to divulge the easiness imparted by sonochemistry, which finally blends into the discussion of their applications and outreach.

Keywords: Nanomaterial synthesis; Sonochemistry; Ultrasound.

Publication types

  • Review