Evaluation of AKT phosphorylation and PTEN loss and their correlation with the resistance of rituximab in DLBCL

Int J Clin Exp Pathol. 2015 Nov 1;8(11):14875-84. eCollection 2015.

Abstract

Background: Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of lymphoma with quite high mortality. PTEN/PI3K/AKT signal pathway is constitutively activated and plays an oncogenic role in most tumors including non-Hodgkin's lymphoma (NHL). Since rituximab used in chemotherapy has been proved to improve the survival of DLBCL patients, rituximab resistance is a common clinical challenge in the treatment of DLBCL. The aims of the present study are to determine the different levels of several important biomarkers of PTEN/PI3K/AKT pathway in DLBCL patients who are resistant or sensitive to rituximab treatment, and investigate the potential clinical application of these biomarkers.

Methods: 48 patients with DLBCL who were treated by rituximab-based chemotherapy were divided into 2 groups according to their reactions to rituximab. The expression of p-AKT, PTEN, and Ki-67 protein in 48 DLBCL tissues were detected using immunohistochemistry and analyzed for the clinical pathological significance and the resistance to rituximab. Meanwhile, PTEN gene deletion was detected also by FISH, and mutation of PIK3CA was performed by sequencing analysis.

Results: Activation of p-AKT in 12 of 48 (25.0%) and loss expression of PTEN in 15 of 48 (31.3%) DLBCL species were observed. P-AKT activation (P<0.05) and loss of PTEN expression (P<0.05) were significantly associative with high Ki-67 index. P-AKT and PTEN expression showed a significant negative correlation in all 48 DLBCL patients (r=-0.450, P<0.05), and the Spearman correlation coefficient in the resistant group (r=-0.769, P<0.05) was greater than in the sensitive group (r=-0.691, P<0.05).

Conclusion: Regulation of PTEN/PI3K/AKT signal pathway participates in the progression of DLBCL, and may be involved in the development of the resistance to rituximab for some DLBCL patients.

Keywords: AKT; PI3K; PTEN; lymphoma; rituximab resistance.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Antineoplastic Agents / therapeutic use
  • Biomarkers, Tumor / analysis
  • Drug Resistance, Neoplasm / physiology*
  • Female
  • Humans
  • Immunohistochemistry
  • In Situ Hybridization, Fluorescence
  • Lymphoma, Large B-Cell, Diffuse / drug therapy
  • Lymphoma, Large B-Cell, Diffuse / genetics
  • Lymphoma, Large B-Cell, Diffuse / metabolism*
  • Male
  • Middle Aged
  • PTEN Phosphohydrolase / genetics
  • PTEN Phosphohydrolase / metabolism*
  • Phosphatidylinositol 3-Kinases / metabolism*
  • Phosphorylation
  • Proto-Oncogene Proteins c-akt / genetics
  • Proto-Oncogene Proteins c-akt / metabolism*
  • Rituximab / therapeutic use
  • Signal Transduction / physiology

Substances

  • Antineoplastic Agents
  • Biomarkers, Tumor
  • Rituximab
  • Phosphatidylinositol 3-Kinases
  • Proto-Oncogene Proteins c-akt
  • PTEN Phosphohydrolase
  • PTEN protein, human