Aging and Sensory Substitution in a Virtual Navigation Task

PLoS One. 2016 Mar 23;11(3):e0151593. doi: 10.1371/journal.pone.0151593. eCollection 2016.

Abstract

Virtual environments are becoming ubiquitous, and used in a variety of contexts-from entertainment to training and rehabilitation. Recently, technology for making them more accessible to blind or visually impaired users has been developed, by using sound to represent visual information. The ability of older individuals to interpret these cues has not yet been studied. In this experiment, we studied the effects of age and sensory modality (visual or auditory) on navigation through a virtual maze. We added a layer of complexity by conducting the experiment in a rotating room, in order to test the effect of the spatial bias induced by the rotation on performance. Results from 29 participants showed that with the auditory cues, it took participants a longer time to complete the mazes, they took a longer path length through the maze, they paused more, and had more collisions with the walls, compared to navigation with the visual cues. The older group took a longer time to complete the mazes, they paused more, and had more collisions with the walls, compared to the younger group. There was no effect of room rotation on the performance, nor were there any significant interactions among age, feedback modality and room rotation. We conclude that there is a decline in performance with age, and that while navigation with auditory cues is possible even at an old age, it presents more challenges than visual navigation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aging*
  • Female
  • Hearing
  • Humans
  • Male
  • User-Computer Interface*
  • Vision, Ocular
  • Young Adult

Grants and funding

The Brandeis-Leir foundation (SL, AA, JL) and the Brandeis-Bronfman foundation (SL, JL) provided funding for this experiment. The research was partially supported by the Helmsley Charitable Trust through the Agricultural, Biological and Cognitive Robotics Center of the Ben-Gurion University of the Negev (SL). The support of the Promobilia Foundation is gratefully acknowledged (SL). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.