Characteristics and performance of offset phase locked single frequency heterodyned laser systems

Rev Sci Instrum. 2016 May;87(5):053107. doi: 10.1063/1.4946999.

Abstract

We demonstrate and characterize the performance of two heterodyned optical phase locked loop (PLL) laser systems for use in characterizing photodetector RF frequency response and nonlinearities. Descriptions of PLL circuit parameters for Nd:YAG non-planar ring oscillator lasers at 1064 nm and 1319 nm, and Er ion fiber lasers from 1530 nm to 1565 nm are presented. Both laser systems have piezoelectric transducer wavelength control over the PLL voltage controlled oscillator circuit. Offset frequency phase locking from 1.5 kHz to 51+ GHz is demonstrated. Frequency stability at 10 MHz is measured to be ±50 μHz, limited by the stability of the Rb stabilized crystal oscillator. Phase noise of the phase-locked 1319 nm laser system is discussed where we find that the phase noise is dominated by the input source noise at frequency offsets below 100 Hz and by the laser's RIN noise at frequency offsets > 100 Hz. Comparing nonlinearity data from an InGaAs p-i-n photodiode using both 1319 nm and 1550 nm PLL nonlinearity measurement systems, we find two new separate photodetector nonlinearity mechanisms. Measurements of the harmonic components of a 11 MHz sinusoidal heterodyned optical beat note signal are found to be at or below 1 nW/mW for the second harmonic (at 22 MHz) and at or below 0.25 nW/mW for the 3rd harmonic (at 33 MHz), confirming the nearly pure sinusoidal nature of the optically generated microwave beat note.

Publication types

  • Research Support, Non-U.S. Gov't