Delivery of Therapeutic siRNA to the CNS Using Cationic and Anionic Liposomes

J Vis Exp. 2016 Jul 23:(113):54106. doi: 10.3791/54106.

Abstract

Prion diseases result from the misfolding of the normal, cellular prion protein (PrP(C)) to an abnormal protease resistant isomer called PrP(Res). The emergence of prion diseases in wildlife populations and their increasing threat to human health has led to increased efforts to find a treatment for these diseases. Recent studies have found numerous anti-prion compounds that can either inhibit the infectious PrP(Res) isomer or down regulate the normal cellular prion protein. However, most of these compounds do not cross the blood brain barrier to effectively inhibit PrP(Res) formation in brain tissue, do not specifically target neuronal PrP(C), and are often too toxic to use in animal or human subjects. We investigated whether siRNA delivered intravascularly and targeted towards neuronal PrP(C) is a safer and more effective anti-prion compound. This report outlines a protocol to produce two siRNA liposomal delivery vehicles, and to package and deliver PrP siRNA to neuronal cells. The two liposomal delivery vehicles are 1) complexed-siRNA liposome formulation using cationic liposomes (LSPCs), and 2) encapsulated-siRNA liposome formulation using cationic or anionic liposomes (PALETS). For the LSPCs, negatively charged siRNA is electrostatically bound to the cationic liposome. A positively charged peptide (RVG-9r [rabies virus glycoprotein]) is added to the complex, which specifically targets the liposome-siRNA-peptide complexes (LSPCs) across the blood brain barrier (BBB) to acetylcholine expressing neurons in the central nervous system (CNS). For the PALETS (peptide addressed liposome encapsulated therapeutic siRNA), the cationic and anionic lipids were rehydrated by the PrP siRNA. This procedure results in encapsulation of the siRNA within the cationic or anionic liposomes. Again, the RVG-9r neuropeptide was bound to the liposomes to target the siRNA/liposome complexes to the CNS. Using these formulations, we have successfully delivered PrP siRNA to AchR-expressing neurons, and decreased the PrP(C) expression of neurons in the CNS.

Publication types

  • Video-Audio Media

MeSH terms

  • Animals
  • Blood-Brain Barrier
  • Cations
  • Central Nervous System / drug effects*
  • Drug Delivery Systems*
  • Humans
  • Liposomes / chemistry*
  • Mice
  • Prion Diseases / drug therapy
  • Prion Proteins / chemistry
  • RNA, Small Interfering / therapeutic use*

Substances

  • Cations
  • Liposomes
  • Prion Proteins
  • RNA, Small Interfering