Clarifying the confusion: old-growth savannahs and tropical ecosystem degradation

Philos Trans R Soc Lond B Biol Sci. 2016 Sep 19;371(1703):20150306. doi: 10.1098/rstb.2015.0306.

Abstract

Ancient tropical grassy biomes are often misrecognized as severely degraded forests. I trace this confusion to several factors, with roots in the nineteenth century, including misinterpretations of the nature of fire in savannahs, attempts to reconcile savannah ecology with Clementsian succession, use of physiognomic (structural) definitions of savannah and development of tropical degradation frameworks focused solely on forests. Towards clarity, I present two models that conceptualize the drivers of ecosystem degradation as operating in both savannahs and forests. These models highlight how human-induced environmental changes create ecosystems with superficially similar physiognomies but radically different conservation values. Given the limitation of physiognomy to differentiate savannahs from severely degraded forests, I present an alternative approach based on floristic composition. Data from eastern lowland Bolivia show that old-growth savannahs can be reliably distinguished by eight grass species and that species identity influences ecosystem flammability. I recommend that scientists incorporate savannahs in tropical degradation frameworks alongside forests, and that savannah be qualified as old-growth savannah in reference to ancient grassy biomes or derived savannah in reference to deforestation. These conceptual advances will require attention not only to tree cover, but also to savannah herbaceous plant species and their ecologies.This article is part of the themed issue 'Tropical grassy biomes: linking ecology, human use and conservation'.

Keywords: Amazon; Cerrado; grassland; restoration; tropical forest; woodland.

Publication types

  • Review
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bolivia
  • Conservation of Natural Resources*
  • Forests*
  • Grassland*
  • Models, Biological
  • Tropical Climate*