Finding the Way to Solar Fuels with Dye-Sensitized Photoelectrosynthesis Cells

J Am Chem Soc. 2016 Oct 12;138(40):13085-13102. doi: 10.1021/jacs.6b06466. Epub 2016 Oct 3.

Abstract

The dye-sensitized photoelectrosynthesis cell (DSPEC) integrates high bandgap, nanoparticle oxide semiconductors with the light-absorbing and catalytic properties of designed chromophore-catalyst assemblies. The goals are photoelectrochemical water splitting into hydrogen and oxygen and reduction of CO2 by water to give oxygen and carbon-based fuels. Solar-driven water oxidation occurs at a photoanode and water or CO2 reduction at a cathode or photocathode initiated by molecular-level light absorption. Light absorption is followed by electron or hole injection, catalyst activation, and catalytic water oxidation or water/CO2 reduction. The DSPEC is of recent origin but significant progress has been made. It has the potential to play an important role in our energy future.