Overexpression of MsDREB6.2 results in cytokinin-deficient developmental phenotypes and enhances drought tolerance in transgenic apple plants

Plant J. 2017 Feb;89(3):510-526. doi: 10.1111/tpj.13401. Epub 2017 Feb 1.

Abstract

Dehydration-responsive element binding factors (DREBs) play important roles in plant growth, development, and stress signaling pathways in model plants. However, little is known about the function of DREBs in apple (Malus × domestica), a widely cultivated crop that is frequently threatened by drought. We isolated a DREB gene from Malus sieversii (Ledeb.) Roem., MsDREB6.2, and investigated its functions using overexpression analysis and chimeric repressor gene-silencing technology (CRES-T). We identified possible target genes of the protein encoded by MsDREB6.2 using electrophoretic mobility shift assays (EMSAs) and chromatin immunoprecipitation (ChIP). Overexpression of MsDREB6.2 increased the expression of a key cytokinin (CK) catabolism gene, MdCKX4a, which led to a significant reduction in endogenous CK levels, and caused a decrease in shoot:root ratio in transgenic apple plants. Overexpression of MsDREB6.2 resulted in a decrease in stomatal aperture and density and an increase in root hydraulic conductance (L0 ), and thereby enhanced drought tolerance in transgenic plants. Furthermore, manipulating the level of MsDREB6.2 expression altered the expression of two aquaporin (AQP) genes. The effect of the two AQP genes on L0 was further characterized using the AQP inhibitor HgCl2 . Based on these observations, we conclude that MsDREB6.2 enhances drought tolerance and that its function may be due, at least in part, to its influence on stomatal opening, root growth, and AQP expression. These results may have applications in apple rootstock breeding programs aimed at developing drought-resistant apple varieties.

Keywords: CRES-T; DREB6-type transcription factor; Malus sieversii Roem; aquaporin; cytokinin; drought stress; root hydraulic conductance; shoot:root ratio.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptation, Physiological / genetics
  • Aquaporins / genetics
  • Aquaporins / metabolism
  • Cytokinins / metabolism*
  • Droughts*
  • Gene Expression Regulation, Developmental
  • Gene Expression Regulation, Plant
  • Malus / genetics
  • Malus / growth & development
  • Malus / metabolism*
  • Phenotype
  • Plant Proteins / genetics
  • Plant Proteins / metabolism*
  • Plant Roots / genetics
  • Plant Roots / growth & development
  • Plant Roots / metabolism
  • Plant Shoots / genetics
  • Plant Shoots / growth & development
  • Plant Shoots / metabolism
  • Plant Stomata / genetics
  • Plant Stomata / metabolism
  • Plant Stomata / physiology
  • Plants, Genetically Modified
  • Protein Binding
  • Stress, Physiological

Substances

  • Aquaporins
  • Cytokinins
  • Plant Proteins