Sustained Effects of Neonatal Systemic Lipopolysaccharide on IL-1β and Nrf2 in Adult Rat Substantia Nigra Are Partly Normalized by a Spirulina-Enriched Diet

Neuroimmunomodulation. 2016;23(4):250-259. doi: 10.1159/000452714. Epub 2016 Dec 9.

Abstract

Background/aim: Neonatal infection can sensitize the adult substantia nigra (SN) to secondary insults, causing a decrease in antioxidant capacity which may lead to Parkinson's disease in adults. We studied the prolonged effect of systemic infection by (i.p.) administration of lipopolysaccharide (LPS) on interleukin (IL)-1β, the antioxidant regulator nuclear factor-erythroid 2-related factor 2 (Nrf2), and the peroxisome proliferator-activated receptor γ coactivator (PGC)-1α in rat SN.

Method and results: Five-day-old rat pups were treated with LPS (i.p. 2 mg/kg). After 65 days, the mRNA level of IL-1β was significantly increased, in parallel with a decrease in that of the rate-limiting enzyme in glutathione synthesis, the γ-glutamylcysteine ligase catalytic subunit (γGCLc), Nrf2, and brain-derived neurotrophic factor (BDNF). Protein levels of γGCLc and Nrf2 were decreased while IL-1β protein was significantly increased. These LPS-induced long-term changes correlated with a decrease in phosphorylated (active) AKT (pAKT) and phosphorylated (inactive) GSK-3β (pGSK-3β). In another set of experiments, a 0.1% Spirulina-containing diet was given to lactating mothers 24 h before the LPS treatment of the pups. The Spirulina-supplemented diet decreased IL-1β protein expression in SN and elevated the mRNA level of γGCLc, Nrf2 protein, PGC-1α protein, and pAKT.

Conclusion: Early-life infection can negatively affect Nrf2, pAKT, and pGSK-3β for a long time in SN. A diet enriched with antioxidant and anti-inflammatory phytochemicals can partly restore some, but not all, of the effects on the antioxidant defense, possibly via normalizing effects on pAKT.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Age Factors
  • Animals
  • Animals, Newborn
  • Dietary Proteins / administration & dosage*
  • Interleukin-1beta / metabolism*
  • Lipopolysaccharides / toxicity*
  • NF-E2-Related Factor 2 / metabolism*
  • Oxidative Stress / drug effects
  • Oxidative Stress / physiology
  • Rats
  • Rats, Sprague-Dawley
  • Spirulina*
  • Substantia Nigra / drug effects
  • Substantia Nigra / metabolism*
  • Treatment Outcome

Substances

  • Dietary Proteins
  • Interleukin-1beta
  • Lipopolysaccharides
  • NF-E2-Related Factor 2
  • Nfe2l2 protein, rat