Visualizing polymeric bioresorbable scaffolds with three-dimensional image reconstruction using contrast-enhanced micro-computed tomography

Int J Cardiovasc Imaging. 2017 May;33(5):731-737. doi: 10.1007/s10554-016-1049-z. Epub 2016 Dec 30.

Abstract

There are no previous studies showing how to visualize polymeric bioresorbable scaffolds (BRSs) by micro-computed tomography (mCT). There are no previous studies showing how to visualize polymeric bioresorbable scaffolds (BRSs) by micro-computed tomography (mCT). This study aimed to explore the feasibility of detecting polymeric BRS with 3-dimensional reconstruction of BRS images by contrast-enhanced mCT and to determine the optimal imaging settings. BRSs, made of poly-L-lactic acid (PLLA), were implanted in coronary bifurcation models. Five treatments were conducted to examine an optimal condition for imaging BRSs: Baseline treatment, samples were filled with normal saline and scanned with mCT immediately; Treatment-1, -2, -3 and -4, samples were filled with contrast medium and scanned with mCT immediately and 1, 2 and 3 h thereafter, corresponding to soaking time of contrast medium of 0, 1, 2 and 3 h. Compared to Baseline, mCT scanning completely discriminate the scaffold struts from the vascular lumen immediately after filling the samples with contrast agent but not from the vascular wall until the contrast agent soaking time was more than 2 h (Treatment-3 and -4). By setting 10-15 HU as a cut-point of CT values, the scaffold strut detectable rate at Baseline and Teatment-1, -2, -3 and -4 were 1.23 ± 0.31%, 1.65 ± 0.26%, 58.14 ± 12.84%, 97.97 ± 1.43% and 98.90 ± 0.38%, respectively (Treatment-3 vs. Treatment-2, p < 0.01); meanwhile, the success rate of 3D BRS reconstruction with high quality images at Baseline and Teatment-1, -2, -3 and -4 were 1.23%, 1.65%, 58.14%, 97.97% and 98.90%, respectively (Treatment-3 vs. Treatment-2, p < 0.01). In conclusions, reconstruction of 3D BRS images is technically feasible by contrast-enhanced mCT and soaking time of contrast agent for more than 2 h is necessary for complete separation of scaffold struts from the surrounding structures in the phantom samples.

Keywords: Bioresorbable scaffolds; Contrast medium; Micro-computed tomography; Three-dimensional reconstruction.

Publication types

  • Comparative Study

MeSH terms

  • Absorbable Implants*
  • Computed Tomography Angiography* / instrumentation
  • Contrast Media*
  • Coronary Angiography / instrumentation
  • Coronary Angiography / methods*
  • Coronary Vessels / diagnostic imaging*
  • Feasibility Studies
  • Humans
  • Imaging, Three-Dimensional*
  • Materials Testing
  • Models, Anatomic
  • Models, Cardiovascular
  • Percutaneous Coronary Intervention / instrumentation*
  • Phantoms, Imaging
  • Polyesters / chemistry*
  • Predictive Value of Tests
  • Radiographic Image Interpretation, Computer-Assisted / methods*
  • Time Factors
  • X-Ray Microtomography* / instrumentation

Substances

  • Contrast Media
  • Polyesters
  • poly(lactide)