A Structural Model for Vinculin Insertion into PIP2-Containing Membranes and the Effect of Insertion on Vinculin Activation and Localization

Structure. 2017 Feb 7;25(2):264-275. doi: 10.1016/j.str.2016.12.002. Epub 2017 Jan 12.

Abstract

Vinculin, a scaffolding protein that localizes to focal adhesions (FAs) and adherens junctions, links the actin cytoskeleton to the adhesive super-structure. While vinculin binds to a number of cytoskeletal proteins, it can also associate with phosphatidylinositol 4,5-bisphosphate (PIP2) to drive membrane association. To generate a structural model for PIP2-dependent interaction of vinculin with the lipid bilayer, we conducted lipid-association, nuclear magnetic resonance, and computational modeling experiments. We find that two basic patches on the vinculin tail drive membrane association: the basic collar specifically recognizes PIP2, while the basic ladder drives association with the lipid bilayer. Vinculin mutants with defects in PIP2-dependent liposome association were then expressed in vinculin knockout murine embryonic fibroblasts. Results from these analyses indicate that PIP2 binding is not required for localization of vinculin to FAs or FA strengthening, but is required for vinculin activation and turnover at FAs to promote its association with the force transduction FA nanodomain.

Keywords: PIP2; focal adhesion; iPALM; lipid bilayer; molecular dynamics; nuclear magnetic resonance; vinculin.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Actin Cytoskeleton / genetics
  • Actin Cytoskeleton / metabolism*
  • Actins / genetics
  • Actins / metabolism*
  • Amino Acid Motifs
  • Animals
  • Binding Sites
  • Embryo, Mammalian
  • Fibroblasts / metabolism
  • Fibroblasts / ultrastructure
  • Focal Adhesions / metabolism*
  • Focal Adhesions / ultrastructure
  • Gene Expression
  • Hydrophobic and Hydrophilic Interactions
  • Lipid Bilayers / chemistry*
  • Lipid Bilayers / metabolism
  • Mechanotransduction, Cellular
  • Mice
  • Molecular Docking Simulation
  • Molecular Dynamics Simulation
  • Mutation
  • Nuclear Magnetic Resonance, Biomolecular
  • Phosphatidylinositol 4,5-Diphosphate / chemistry*
  • Phosphatidylinositol 4,5-Diphosphate / metabolism
  • Protein Binding
  • Protein Conformation, alpha-Helical
  • Protein Interaction Domains and Motifs
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / genetics
  • Recombinant Proteins / metabolism
  • Thermodynamics
  • Vinculin / chemistry*
  • Vinculin / genetics
  • Vinculin / metabolism

Substances

  • Actins
  • Lipid Bilayers
  • Phosphatidylinositol 4,5-Diphosphate
  • Recombinant Proteins
  • Vinculin