The effect of eccentric exercise with blood flow restriction on neuromuscular activation, microvascular oxygenation, and the repeated bout effect

Eur J Appl Physiol. 2017 May;117(5):1005-1015. doi: 10.1007/s00421-017-3589-x. Epub 2017 Mar 21.

Abstract

Purpose: To examine the effect of low-intensity eccentric contractions with and without blood flow restriction (BFR) on microvascular oxygenation, neuromuscular activation, and the repeated bout effect (RBE).

Methods: Participants were randomly assigned to either low-intensity (LI), low-intensity with BFR (LI-BFR), or a control (CON) group. Participants in LI and LI-BFR performed a preconditioning bout of low-intensity eccentric exercise prior to about of maximal eccentric exercise. Participants reported 24, 48, 72, and 96 h later to assess muscle damage and function. Surface electromyography (sEMG) and near-infrared spectroscopy (NIRS) were used to measure neuromuscular activation and microvascular deoxygenation (deoxy-[Hb + Mb]) and [total hemoglobin] ([THC]) during the preconditioning bout, respectively.

Results: During set-2, LI-BFR resulted in greater activation of the VM-RMS (47.7 ± 11.5% MVIC) compared to LI (67.0 ± 20.0% MVIC), as well as during set-3 (p < 0.05). LI-BFR resulted in a greater change in deoxy-[Hb + Mb] compared to LI during set-2 (LI-BFR 13.1 ± 5.2 µM, LI 6.7 ± 7.9 µM), set-3 (LI-BFR 14.6 ± 6 µM, LI 6.9 ± 7.4 µM), and set-4 (p < 0.05). [THC] was higher during LI-BFR compared to LI (p < 0.05). All groups showed a decrease in MVIC torque immediately after maximal exercise (LI 74.2 ± 14.1%, LI-BFR 75 ± 5.1%, CON 53 ± 18.6%). At 24, 48, 72, and 96 h post maximal eccentric exercise, LI and LI-BFR force deficit was not different from baseline.

Conclusion: This study suggests that the neuromuscular and deoxygenation (i.e., metabolic stress) responses were considerably different between LI and LI-BFR groups; however, these differences did not lead to improvements in the RBE inferred by performing LI and LI-BFR.

Keywords: Blood flow restriction; Near-infrared spectroscopy; Repeated bout effect.

Publication types

  • Randomized Controlled Trial

MeSH terms

  • Adult
  • Exercise*
  • Humans
  • Ischemic Preconditioning / adverse effects
  • Ischemic Preconditioning / methods*
  • Male
  • Microvessels / physiology
  • Muscle Contraction
  • Muscle, Skeletal / blood supply
  • Muscle, Skeletal / physiology*
  • Myalgia / prevention & control*
  • Oxygen Consumption*
  • Regional Blood Flow