Tuning Ferritin's band gap through mixed metal oxide nanoparticle formation

Nanotechnology. 2017 May 12;28(19):195604. doi: 10.1088/1361-6528/aa68b0. Epub 2017 Mar 23.

Abstract

This study uses the formation of a mixed metal oxide inside ferritin to tune the band gap energy of the ferritin mineral. The mixed metal oxide is composed of both Co and Mn, and is formed by reacting aqueous Co2+ with [Formula: see text] in the presence of apoferritin. Altering the ratio between the two reactants allowed for controlled tuning of the band gap energies. All minerals formed were indirect band gap materials, with indirect band gap energies ranging from 0.52 to 1.30 eV. The direct transitions were also measured, with energy values ranging from 2.71 to 3.11 eV. Tuning the band gap energies of these samples changes the wavelengths absorbed by each mineral, increasing ferritin's potential in solar-energy harvesting. Additionally, the success of using [Formula: see text] in ferritin mineral formation opens the possibility for new mixed metal oxide cores inside ferritin.