CMG-Pol epsilon dynamics suggests a mechanism for the establishment of leading-strand synthesis in the eukaryotic replisome

Proc Natl Acad Sci U S A. 2017 Apr 18;114(16):4141-4146. doi: 10.1073/pnas.1700530114. Epub 2017 Apr 3.

Abstract

The replisome unwinds and synthesizes DNA for genome duplication. In eukaryotes, the Cdc45-MCM-GINS (CMG) helicase and the leading-strand polymerase, Pol epsilon, form a stable assembly. The mechanism for coupling DNA unwinding with synthesis is starting to be elucidated, however the architecture and dynamics of the replication fork remain only partially understood, preventing a molecular understanding of chromosome replication. To address this issue, we conducted a systematic single-particle EM study on multiple permutations of the reconstituted CMG-Pol epsilon assembly. Pol epsilon contains two flexibly tethered lobes. The noncatalytic lobe is anchored to the motor of the helicase, whereas the polymerization domain extends toward the side of the helicase. We observe two alternate configurations of the DNA synthesis domain in the CMG-bound Pol epsilon. We propose that this conformational switch might control DNA template engagement and release, modulating replisome progression.

Keywords: CMG helicase; DNA polymerase; DNA replication; single-particle electron microscopy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • DNA Helicases / genetics
  • DNA Helicases / metabolism*
  • DNA Polymerase II / genetics
  • DNA Polymerase II / metabolism*
  • DNA Replication*
  • Eukaryotic Cells / metabolism*
  • Saccharomyces cerevisiae / enzymology*
  • Saccharomyces cerevisiae / genetics
  • Saccharomyces cerevisiae / growth & development
  • Saccharomyces cerevisiae Proteins / genetics
  • Saccharomyces cerevisiae Proteins / metabolism*

Substances

  • Saccharomyces cerevisiae Proteins
  • DNA Polymerase II
  • DNA Helicases