Prognostic and predictive role of COX-2, XRCC1 and RASSF1 expression in patients with esophageal squamous cell carcinoma receiving radiotherapy

Oncol Lett. 2017 Apr;13(4):2549-2556. doi: 10.3892/ol.2017.5780. Epub 2017 Feb 24.

Abstract

Identification of biomarkers for predicting radiosensitivity would be useful for administering individualized radiotherapy (RT) to patients with esophageal cancer. The aim of the present study was to evaluate the association between cyclooxygenase-2 (COX-2), X-ray repair cross complementing group 1 (XRCC1), ras association domain family 1 (RASSF1) protein expression, clinicopathological characteristics, radiosensitivity and survival rate in 76 patients with esophageal squamous cell carcinoma (ESCC) who were treated with RT. Positive expression of COX-2, XRCC1 and RASSF1 was identified by immunohistochemistry in 81.6, 52.6 and 59.2% of ESCC cases, respectively. Negative COX-2 expression was associated with tumor (T) stage, node (N) stage, clinical stage and complete response (P<0.05), but not with gender, age, tumor location, differentiation degree, lesion length, progression-free survival (PFS) or overall survival (OS; P>0.05). XRCC1 expression was not associated with the clinicopathological features of ESCC, response to RT, PFS or OS. Positive RASSF1 expression was associated with the clinical stage, response to RT, PFS and OS (P<0.05), but not with gender, age, tumor location, T stage, N stage, differentiation degree or the lesion length (P>0.05). In the subgroup analysis, RASSF1 positive/XRCC1 negative expression was correlated with a longer median OS and PFS (P<0.05). Multivariate analyses revealed that the tumor response and RASSF1 expression were significant prognostic factors. Therefore, positive RASSF1 expression is associated with ESCC RT sensitivity, and may be a useful independent prognostic factor for ESCC.

Keywords: X-ray repair cross complementing group 1; cyclooxygenase-2; esophageal neoplasms; prognosis; radiosensitivity; radiotherapy; ras association domain family 1.