Translation-Invariant Parent Hamiltonians of Valence Bond Crystals

Phys Rev Lett. 2017 Apr 21;118(16):167202. doi: 10.1103/PhysRevLett.118.167202. Epub 2017 Apr 17.

Abstract

We present a general method to construct translation-invariant and SU(2) symmetric antiferromagnetic parent Hamiltonians of valence bond crystals (VBCs). The method is based on a canonical mapping transforming S=1/2 spin operators into a bilinear form of a new set of dimer fermion operators. We construct parent Hamiltonians of the columnar and the staggered VBCs on the square lattice, for which the VBC is an eigenstate in all regimes and the exact ground state in some region of the phase diagram. We study the departure from the exact VBC regime upon tuning the anisotropy by means of the hierarchical mean field theory and exact diagonalization on finite clusters. In both Hamiltonians, the VBC phase extends over the exact regime and transits to a columnar antiferromagnet (CAFM) through a window of intermediate phases, revealing an intriguing competition of correlation lengths at the VBC-CAFM transition. The method can be readily applied to construct other VBC parent Hamiltonians in different lattices and dimensions.