The Role of the N-Terminal Domains of Bacterial Initiator DnaA in the Assembly and Regulation of the Bacterial Replication Initiation Complex

Genes (Basel). 2017 May 10;8(5):136. doi: 10.3390/genes8050136.

Abstract

The primary role of the bacterial protein DnaA is to initiate chromosomal replication. The DnaA protein binds to DNA at the origin of chromosomal replication (oriC) and assembles into a filament that unwinds double-stranded DNA. Through interaction with various other proteins, DnaA also controls the frequency and/or timing of chromosomal replication at the initiation step. Escherichia coli DnaA also recruits DnaB helicase, which is present in unwound single-stranded DNA and in turn recruits other protein machinery for replication. Additionally, DnaA regulates the expression of certain genes in E. coli and a few other species. Acting as a multifunctional factor, DnaA is composed of four domains that have distinct, mutually dependent roles. For example, C-terminal domain IV interacts with double-stranded DnaA boxes. Domain III drives ATP-dependent oligomerization, allowing the protein to form a filament that unwinds DNA and subsequently binds to and stabilizes single-stranded DNA in the initial replication bubble; this domain also interacts with multiple proteins that control oligomerization. Domain II constitutes a flexible linker between C-terminal domains III-IV and N-terminal domain I, which mediates intermolecular interactions between DnaA and binds to other proteins that affect DnaA activity and/or formation of the initiation complex. Of these four domains, the role of the N-terminus (domains I-II) in the assembly of the initiation complex is the least understood and appears to be the most species-dependent region of the protein. Thus, in this review, we focus on the function of the N-terminus of DnaA in orisome formation and the regulation of its activity in the initiation complex in different bacteria.

Keywords: DiaA; DnaA; DnaB; Dps; Hda; HobA; N-terminus of DnaA; SirA; chromosomal replication; oriC; orisome.

Publication types

  • Review