Exploration of Spinal Cord Aging-Related Proteins Using a Proteomics Approach

J Exp Neurosci. 2017 Jun 8:11:1179069517713019. doi: 10.1177/1179069517713019. eCollection 2017.

Abstract

How aging affects the spinal cord at a molecular level is unclear. The aim of this study was to explore spinal cord aging-related proteins that may be involved in pathological mechanisms of age-related changes in the spinal cord. Spinal cords of 2-year-old and 8-week-old female Sprague-Dawley rats were dissected from the animals. Protein samples were subjected to 2-dimentional polyacrylamide gel electrophoresis followed by mass spectrometry. Screened proteins were further investigated with immunohistochemistry and Western blotting. Among the screened proteins, we selected α-crystallin B-subunit (αB-crystallin) and peripherin for further investigation because these proteins were previously reported to be related to central nervous system pathologies. Immunohistochemistry and Western blotting revealed significant upregulation of αB-crystallin and peripherin expression in aged rat spinal cord. Further exploration is needed to elucidate the precise mechanism and potential role of these upregulated proteins in spinal cord aging processes.

Keywords: Aging; peripherin; proteomics; spinal cord; αB-crystallin.