Warming of Subarctic waters accelerates development of a key marine zooplankton Calanus finmarchicus

Glob Chang Biol. 2018 Jan;24(1):172-183. doi: 10.1111/gcb.13864. Epub 2017 Sep 23.

Abstract

Recent observations confirm the rising temperatures of Atlantic waters transported into the Arctic Ocean via the West Spitsbergen Current (WSC). We studied the overall abundance and population structure of the North Atlantic keystone zooplankton copepod Calanus finmarchicus, which is the main prey for pelagic fish and some seabirds, in relation to selected environmental variables in this area between 2001 and 2011, when warming in the Arctic and Subarctic was particularly pronounced. Sampling within a 3-week time window each summer demonstrated that trends in the overall abundance of C. finmarchicus varied between years, with the highest values in "extreme" years, due to high numbers of nauplii and early copepodite stages in colder years (2001, 2004, 2010), and contrary to that, the fifth copepodite stage (C5) peaking in warm years (2006, 2007, 2009). The most influential environmental variable driving C. finmarchicus life cycle was temperature, which promoted an increased C5 abundance when the temperature was above 6°C, indicating earlier spawning and/or accelerated development, and possibly leading to their development to adults later in the summer and spawning for the second time, given adequate food supply. Based on the presented high interannual and spatial variability, we hypothesize that under a warmer climate, C. finmarchicus may annually produce two generations in the southern part of the WSC, what in turn could lead to food web reorganization of important top predators, such as little auks, and induce northward migrations of fish, especially the Norwegian herring.

Keywords: Arctic; Calanus; West Spitsbergen Current; atlantification; climate change; fish migrations; plankton; seabirds.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Arctic Regions
  • Climate Change
  • Copepoda / growth & development*
  • Food Chain*
  • Oceans and Seas
  • Seasons
  • Temperature*
  • Zooplankton*