The spectral properties and photosensitivities of analogue photopigments regenerated with 10- and 14-substituted retinal analogues

Proc R Soc Lond B Biol Sci. 1988 Feb 23;233(1270):55-76. doi: 10.1098/rspb.1988.0012.

Abstract

Analogues of 11-cis- and 9-cis-retinal with substitutions at positions 10 and 14 were used to regenerate analogue photopigments with two opsins: that of the transmuted (cone-like) 521-pigment of Gekko gekko and that of the rhodopsin of Porichthys notatus. The spectral absorbances and photosensitivities of the regenerated photopigments were determined and compared, first, between the two systems of analogue photopigments, and second, in the responses to the two opsins. Unlike the 10-fluoropigments, the comparable 14-compounds were significantly red-shifted by 19-30 nm and their sensitivity to light was similar to that of the parent 11-cis- and 9-cis-pigments. These were the results for both analogue pigments. In contrast, the 10-pigments were spectrally located close to the wavelengths of the parent compounds and the photosensitivity was significantly reduced, especially in the case of the 9-cis-analogues. Evidence was obtained for a steric hindrance effect at position 14, for no regeneration was obtained when methyl or ethyl groups were at this carbon. In the 10-substituted retinals, steric hindrance was noted only for the gecko; only the fluorosubstituted, but not the chloro-, the methyl- or the ethyl-substituted, retinals reacted. With the fish opsin, pigments were regenerated with all but the ethyl-substituted retinal. The gecko opsin appears to have a more restricted binding site. Another feature of the gecko was related to the chloride bathochromic and hyperchromic effects, in which the 521-pigment prepared in a chloride-deficient state has a blue-shifted spectrum compared with the spectrum obtained after the addition of chloride, and its extinction is raised by the addition of chloride to give a mean ratio of 1.23 for the two extinctions, one with, the other without, added chloride. The 11-cis-10-F-analogue pigment gave both chloride effects and the hyperchromic ratio was the same as that recorded for the native visual pigment. In contrast, the pigment formed with 11-cis-14-F-retinal gave a hyperchromic ratio significantly greater than 1.23. A similar contrast in the responses to chloride was obtained with the analogue photopigments regenerated with the 9-cis-10-F- and 9-cis-14-F-chromophores. This difference between the two systems is interpreted as the result of a specific configurational feature of the gecko opsin when in the chloride-deficient state that is relevant to the binding of the retinal analogue.(ABSTRACT TRUNCATED AT 400 WORDS)

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Eye Proteins / analysis
  • Fishes / physiology*
  • Lizards / physiology*
  • Retinal Pigments / analysis*
  • Retinaldehyde / analogs & derivatives
  • Rhodopsin / analysis
  • Rod Opsins
  • Spectrophotometry

Substances

  • Eye Proteins
  • Retinal Pigments
  • Rod Opsins
  • Rhodopsin
  • Retinaldehyde